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Abstract. Network tomography plays a crucial role in network mon-
itoring and management, where network topology serves as the funda-
mental basis for various tomography tasks including traffic matrix esti-
mation and link performance inference. The topology information, how-
ever, can be inferred through end-to-end measurements using various
inference algorithms, posing significant security risks to network infras-
tructure. While existing protection methods attempt to secure topology
information by modifying end-to-end measurements, they often require
complex computation and sophisticated modification strategies, mak-
ing real-time protection challenging. Moreover, these modifications typ-
ically render the measurements unusable for network monitoring, even
by trusted users. This paper presents a novel privacy-preserving frame-
work that addresses these limitations. Our approach provides efficient
topology protection while maintaining the utility of measurements for
authorized network monitoring. Through extensive evaluation on both
simulated and real-world networks, we demonstrate that our framework
achieves superior privacy protection compared to existing methods while
enabling trusted users to effectively monitor network performance. Our
solution offers a practical approach for organizations to protect sensitive
topology information without sacrificing their network monitoring capa-
bilities. Source code is available at https://gitee.com/Monickar/secure-
nt.

Keywords: Privacy-Utility Trade-off, Network Communication, Topol-
ogy Protect

1 Introduction

Network tomography has emerged as a crucial technique for understanding and
monitoring large-scale networks through end-to-end measurements [4]. By ana-
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Fig. 1. Overview of our framework: (a) Network Measurement component collecting
end-to-end measurements across network paths. (b) Protection Computing Module that
processes measurement data. (c) Fake Topology presented to malicious actors, causing
their attacks to fail. (d) Network Tomography allowing trusted users to successfully
monitor network status, identifying congested and idle links.

lyzing these measurements, network operators can infer internal network charac-
teristics without requiring direct access to network elements. This non-intrusive
approach has become increasingly important as networks grow in complexity and
scale, particularly in scenarios where direct measurement of network components
is impractical or impossible. Central to the effectiveness of network tomography
is its reliance on accurate network structural information.

Recent years have seen significant advancement in topology inference meth-
ods. Researchers have developed various classic approaches to infer network
topology from end-to-end measurements [2, 15, 20]. These inference techniques
have become increasingly sophisticated, combining multiple measurement types
and leveraging machine learning approaches [1, 11] to improve accuracy.

However, the exposure of topology information presents significant security
vulnerabilities that malicious actors could exploit. Malicious actors who can infer
network topology potentially identify critical network components [7], discover
potential attack vectors [3], or plan targeted disruptions of network services [16].
This vulnerability is particularly concerning as topology information can reveal
the hierarchical structure of networks, including critical paths and potential
single points of failure [6]. Furthermore, knowledge of network topology can
facilitate various attacks, such as traffic analysis, denial of service attacks, or
targeted infrastructure compromise [19].

To counter these inference capabilities, several protection approaches have
been proposed [5,10,17]. Current protection methods typically focus on modify-
ing end-to-end measurements to obscure topology information. However, these
approaches face significant limitations. Most notably, they often require complex
computation to determine appropriate modifications, making real-time protec-
tion challenging. Additionally, these methods ignore the topology protection lies
in the inherent trade-off between privacy and utility, which often significantly de-
grade the quality of network measurements in their attempt to protect topology
information. This degradation poses a particular problem for network operators
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who need accurate measurements for legitimate monitoring and management
tasks. The challenge becomes even more acute when considering environments
where both trusted and untrusted users need to work with the same measure-
ment data, but with enough accurate to classify whether the probe is malicuous.

Given these challenges, we propose a privacy-preserving framework and mech-
anism for network tomography (SecureNT, seen in Fig 1). First, the protection
mechanism operates in real-time, providing immediate safeguarding of topology
information as measurements are taken. This feature is critical for preventing
temporal analysis attacks that could exploit delays in implementing protection.
Second, our solution maintains measurement utility for trusted users, ensuring
that operators and legitimate monitoring systems can accurately assess network
performance and identify issues, even while topology information remains inac-
cessible to unauthorized users. Achieving this balance requires careful trade-offs
between data modification and data usability. Third, the protection mechanism
effectively prevents topology inference by attackers while remaining resilient
to various inference techniques. This includes protection against both current
methods and potential future approaches that might leverage advanced analysis
techniques or combine different types of measurements. Finally, our solution is
computationally efficient, imposing minimal overhead on both processing and
network resources. This efficiency is essential for practical deployment in real-
world networks, where resources are limited, and performance impacts must be
minimized.

Contribution The main contributions of this paper are as follows:

– Framework We propose a novel privacy-preserving framework for network
tomography that effectively protects topology information while maintaining
measurement utility.

– Mechanism We design an efficient mechanism that provides real-time pro-
tection without requiring complex computation or sophisticated modification
strategies.

– Evaluation Through extensive evaluations, we demonstrate that our frame-
work achieves superior protection while maintaining measurement utility for
trusted users.

2 Related Work

Network topology inference and obfuscation represent two interrelated areas of
network research.

Topology Inference Network topology inference has been extensively stud-
ied in network tomography, with early methods relying on additive metrics to
formulate the problem as a linear inverse task, leveraging the known link-path
relationships. Techniques such as Maximum Likelihood Estimation (MLE) [2]
and Expectation Maximization (EM) [20] were employed for robust topology
reconstruction, while algebraic methods like Systems of Linear Equations (SLE)
effectively addressed scenarios with sparse measurements [15]. Machine learning-
based methods have further advanced the field by overcoming limitations of
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traditional approaches. For example, NeuTomography [12] and DeepNT [1] em-
ploy deep neural architectures to infer network structures and predict path per-
formance without prior topology knowledge, offering enhanced scalability and
adaptability to diverse network conditions. These advancements demonstrate
the evolution from statistical and algebraic methods to more flexible, data-driven
approaches for network topology inference.

Topology Obfuscation Recent advancements in network topology obfusca-
tion have emerged to counter various adversarial inference attacks using diverse
strategies. Techniques such as AntiTomo [10] and Proto [5] strategically manip-
ulate end-to-end delay measurements to mislead attackers while preserving the
real topology, whereas EigenObfu [23] explicitly modifies graph structures to gen-
erate convincing fake topologies. While these methods primarily address static
network representations, HBB-TSP [9] addresses the high-order adaptability lim-
itation by leveraging dynamic hypergraphs for real-time obfuscation of critical
links. Complementary approaches such as NetHide [13] and CHAOS [18] provide
optimization-driven and SDN-based moving target defenses, respectively, while
methods like PINOT [21] and Attack Graph Obfuscation [17] focus on achieving
an optimal balance between anonymity, routing efficiency, and deceptive resource
allocation.

3 Preliminaries and Problem Definition

3.1 Network Model and Performance Inference

We consider a network represented as an undirected graph G = (N , L), where N
represents the set of nodes (such as routers, switches, and hosts) and L denotes
the set of links connecting these nodes. Within this network, source nodes gen-
erate data flows that traverse through the network to reach destination nodes.
Each direct connection between two nodes is represented by a link l ∈ L.

A path p is defined as an ordered set of links that connect a source-destination
pair, and we denote the set of all paths in the network as P. The relationship
between paths and links is captured by the routing matrix R ∈ {0, 1}|P|×|L|. If
the element in the i-th row and j-th column of R is 1, it indicates that the i-th
path contains the j-th link; otherwise, it is 0.

In network tomography, the goal is to infer link-level performance metrics
X ∈ R|L| from end-to-end path measurements Y ∈ R|P|. This relationship can
be expressed as:

yi =
|L|⊙
j=1

Rij · xj =⇒ Y = R
⊙

X (1)

where
⊙

represents an operation that varies depending on the performance
metric being considered. For additive metrics such as delay,

⊙
represents sum-

mation, whereas for metrics like capacity, it could represent a minimum oper-
ation. Each element yi represents the end-to-end measurement on path i, and
each element xj represents the performance metric (such as delay or capacity)
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on link j. This inference process critically depends on knowledge of the routing
matrix R, which is derived directly from the network topology. This fundamen-
tal relationship between topology and performance inference underlies both the
utility of network tomography for legitimate monitoring and its vulnerability to
topology inference attacks.

3.2 Attacker Model and Topology Inference

In our threat model, the attacker aims to infer the network topology G by analyz-
ing end-to-end measurements Y. Although the attacker lacks direct knowledge
of the routing matrix R or the topology G, they employ an inference algorithm
f(·) to estimate the routing matrix R̂ and reconstruct the topology Ĝ. This
inference process can be expressed as:

Ĝ = f(Y), where Ĝ =
{

N̂ , L̂, R̂
}

, (2)

with N̂ , L̂, and R̂ representing the inferred nodes, links, and routing matrix,
respectively. The inference process leverages temporal correlations in measure-
ments, statistical properties of end-to-end delays, and patterns in performance
metrics across different paths to improve the accuracy of the reconstruction.

The effectiveness of the attack is measured by comparing the inferred topol-
ogy Ĝ with the actual topology G. This comparison uses a similarity measure
defined as:

Similarity(G, Ĝ) = s(G, Ĝ) = 1 − G0

G1 + G2
, (3)

where s(G, Ĝ) is based on a graph edit distance-inspired metric.G0 quantifies
the cost of transforming the actual topology G into the inferred topology Ĝ, G1
represents the cost of removing all nodes and links from G to obtain an empty
graph, and G2 denotes the cost of constructing Ĝ from an empty graph. The simi-
larity score ranges from 0 to 1. A value of 1 indicates that the inferred topology Ĝ
is identical to the actual topology G, whereas smaller values signify greater struc-
tural differences between the two graphs. This similarity measure offers a flexible
and intuitive way to assess the success of topology inference attacks, where a
high similarity score reflects the attacker’s ability to accurately reconstruct the
network, underscoring the importance of robust protection mechanisms.

4 METHODOLOGY

4.1 Path Relationship-based Noise Injection

To protect the real topology from inference attacks, we introduce a fake topology
represented by another routing matrix R′ ∈ R|P |×|L′|, where L′ denotes the
fake links. A plausible fake link-delay vector X′ ∈ R|L′| is generated based on
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properties like link lengths, and the fake path measurements Y′ ∈ R|P | are
computed as follows:

x′
j = c

l′
j + 1 ⇒ y′

i =
|L′|⊙
j=1

R′
ij · x′

j ⇒ δy = R′
⊙

X′ (4)

where L′
j > 0 is the length of the j-th fake link, and c is a scaling constant.

This process assigns smaller delays to longer links and larger delays to shorter
links, mimicking realistic variability in network delays.

To ensure that the noise δy blends smoothly with the true path measure-
ments Y and reduces statistical differences, it is scaled and smoothed using a
mechanism M . The final modified measurements are expressed as:

Ỹ = Y + δadj
y = R

⊙
X + αMδy (5)

where α adjusts the noise magnitude, and M serves as a proctection comput-
ing moduel, which two distributions A and B as inputs and iteratively applies
gradient descent with a projection step to minimize the L2 loss between them.
This is achieved using two input distributions: the fake measurements R′X′ and
the reference measurements RI, where I ∈ R|L′| is a vector of ones. The adjusted
noise δadj

y is computed as:

δadj
y = M(R′

⊙
X′, R

⊙
I) (6)
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Fig. 2. Noise between AntiTomo (left) and SecureNT (right). SecureNT implements
path length-aware noise smoothing to achieve balanced noise distribution while preserv-
ing overall noise scale. Blue solid lines show the probability density of noise distribution,
and yellow dashed lines represent cumulative distribution functions. The red shaded
regions in the right subplot highlight the additional noise compensation introduced by
SecureNT compared to AntiTomo.

4.2 Protection Objectives
The noise injection mechanism is designed to achieve three intertwined objec-
tives, which can be expressed as:

Ybest = min
Y′

∥Y′ − Y∥ − λ1d(G, G′) + λ2∥X̂t − X∥ (7)
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Algorithm 1: Protection Computing Moduel
Input : Initial distribution Y, target distribution RI, convergence threshold

γ
Output: Adjusted distribution Y′

/* Initialize and Compute Initial Loss */

1 Set the initial total of Y, RI to S(Y) S(RI);
2 Set α← S(RI)

S(Y) −→ Y← Y× α ; /* Scale Y to match sum of RI */

3 Set the initial loss Linitial ← L(Y, RI);
/* Iterative Gradient Descent with Projection */

4 for t = 1 to Tmax do
5 Compute the gradient: ∇L(Y, RI) = 2(Y−RI);
6 Update Y: Y← Y− η · ∇L(Y, RI)

/* Projection to maintain the sum of Y */

7 Compute the current total: S(Y′)← S(Y);
8 Adjust Y : Y← Y× S(RI)

S(Y′) ;

/* Convergence Check */

9 Compute the current loss: Lcurrent ← L(Y, RI);
10 if Lcurrent ≤ γ · Linitial then
11 break ; /* Converged, exit loop */

12 return Y

where λ1 and λ2 are weighting factors that balance the importance of topol-
ogy protection (d(G, G′)) and performance inference accuracy (∥X̂t−X∥) against
the need to preserve measurement fidelity (∥Y′−Y∥). First, measurement fidelity
is preserved by minimizing the difference between the modified and original mea-
surements, ensuring ∥Y′−Y∥ remains small. Second, topology protection is max-
imized by increasing the difference between the real topology G and the topology
G′ inferred from the modified measurements, represented as max d(G, G′), where
d(·, ·) is a topology distance metric. Third, performance inference accuracy for
trusted users is maintained by minimizing the error between the true link per-
formance X and the inferred link performance X̂t, ensuring ∥X̂t − X∥ remains
small. These objectives are carefully balanced through the design of the noise
function ηi(ri), which scales with relationship strength to maximize topology
protection while maintaining bounded noise to preserve fidelity and the utility
of the measurements for trusted users.

5 Evaluation

5.1 Datasets and Comparative Methods

Our evaluation uses real-world network topologies from the Internet dataset
Topology Zoo [8], which provides a diverse set of network configurations. We se-
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lect 4 representative topologies, to ensure a thorough assessment of the proposed
method. These topologies are summarized in Table 1, covering various scales and
structural complexities.

Table 1. Characteristics of four real networks used for numerical simulations.

Mec.
Net. CHINANET AGIS GANET ERNET

#Paths 17 14 15 12
#Links 21 18 17 13

Avg.Hops 3.9 3.6 3.6 3.25
Avg.Weights 4.3 2.8 3.1 3

We compare our approach with two state-of-the-art topology inference meth-
ods and two existing protection methods. For inference, we use Maximum Pe-
nalized Likelihood (MPL) as inference algorithm, which was a classical sta-
tistical approach that infers topology by maximizing the likelihood of observed
end-to-end measurements. For protection, we include AntiTomo, which em-
ploys multi-objective optimization to manipulate delay measurements for topol-
ogy protection, and Proto, a strategy-based method that introduces delays to
create misleading topological impressions.

All methods were implemented in Python, with path measurements generated
using NS-3, and experiments conducted on Linux.

5.2 Topology Protection Effectiveness

We futher evaluate topology protection effectiveness using Similarity Scores,
which measure the similarity between the inferred and true network topologies.
A lower similarity score indicates more effective protection, as it means the
attacker’s inferred topology differs more from the actual network structure.

Figure 3 demonstrates the comparative performance of different protection
methods across four network topologies (GANET, AGIS, CHAINET, and ER-
NET). The baseline case without protection (dashed black line) shows that
attackers can achieve nearly perfect topology inference (similarity scores ap-
proaching 1.0) as the number of probe packets increases. Our proposed SecureNT
method (red line) consistently outperforms Proto (blue line) and achieves per-
formance comparable to AntiTomo (green line) across all evaluated networks.

For smaller networks like AGIS and GANET, SecureNT achieves an average
topology similarity of 78.2%, which is comparable to AntiTomo (77.8%) and
notably better than Proto (82.5%). The protection effectiveness remains robust
for larger networks like CHAINET and ERNET, where SecureNT maintains a
similarity score of 77.7%, matching AntiTomo’s 77.4% while outperforming Proto
by 7.2%. On average across all four topologies, SecureNT improves topology
protection by 6.7% compared to Proto, achieving an overall similarity score of
78.7%.
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Fig. 3. Comparison of topology protection effectiveness on four network topologies
under varying numbers of probe packets. Lower similarity scores indicate better pro-
tection performance.

Importantly, the graphs show that SecureNT’s performance remains stable
even as the number of probe packets increases from 200 to 1800, demonstrating
consistent protection regardless of the intensity of probing attempts. This stabil-
ity across different network sizes and probing intensities confirms that SecureNT
provides reliable defense against topology inference attacks.

5.3 Measurement Utility for Trusted Users

To comprehensively evaluate how well our protection mechanism preserves mea-
surement utility for trusted users, we analyze both binary congestion detection
accuracy and continuous link performance inference capability.

For binary congestion detection, we employ the CLINK [14] algorithm, which
determines link congestion status based on end-to-end measurements and net-
work topology. Figure 4 presents the F1-scores across four network topologies
under both low and high congestion conditions. The baseline case (Without Pro-
tection) achieves F1-scores of approximately 0.87 in low congestion scenarios but
drops to 0.75-0.77 under high congestion, reflecting the inherent challenges of
congestion detection under heavy network load.

SecureNT demonstrates superior utility preservation compared to existing
approaches. Under low congestion conditions, it maintains F1-scores of 0.83-
0.85 for smaller networks (GANET and AGIS) and 0.80-0.82 for larger networks
(CHAINET and ERNET), representing only a 7-10% decrease from the base-
line. In contrast, AntiTomo and Proto show larger performance degradation of
12-15%. The advantage becomes more pronounced under high congestion scenar-
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Fig. 4. F1-scores of link congestion detection under low and high congestion levels
across four network topologies, comparing Normal Tomography with three protection
methods.

ios, where SecureNT maintains F1-scores around 0.70-0.72 across all topologies,
consistently outperforming other methods.

For continuous link performance inference, we quantify accuracy using the
normalized root mean square error (NRMSE):

NRMSE =

√√√√∑M−1
m=0 |y[m] − ŷ[m]|2∑M−1

m=0 |y[m]|2

where y[m] represents the true link performance and ŷ[m] represents the inferred
performance. Figure 5 shows how different protection methods affect Range-
Tomo [22] ’s inference accuracy under varying link congestion probabilities. For
moderate congestion probabilities (0.1-0.3), SecureNT maintains inference accu-
racy above 70% across all networks, while AntiTomo and Proto drop below 65%.
At higher congestion probabilities (0.5), SecureNT preserves inference similarity
around 55-60% while other methods deteriorate to 45-50%.

5.4 Computational Efficiency

We evaluate computational efficiency of protection methods by measuring ex-
ecution times across network topologies under low/high congestion. As shown
in Table 2, SecureNT (γ = 0.6) outperforms baselines consistently, requir-
ing only 98.40 s versus 140.32 s/115.47 s (AntiTomo/Proto) for CHINANET
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Fig. 5. Impact of protection methods on link performance inference accuracy across
four network topologies.

under low congestion. The advantage expands under high congestion (105.34 s
versus 184.75 s/143.45 s).

The parameter γ balances speed and protection quality: γ = 0.4 yields
slightly longer times (108.40 s versus 98.40 s for CHINANET low congestion)
while remaining faster than baselines. Increasing to γ = 0.6 reduces processing
time by 8–10% across topologies with minimal utility trade-off.

SecureNT’s efficiency stems from direct noise injection, avoiding complex
optimization. This enables real-time protection updates even in large dynamic
networks like CHINANET, maintaining practical execution times (≤105 s) un-
der high congestion—critical for real-world deployment.

6 Conclusion

In this paper, we proposed a privacy-preserving framework for network tomogra-
phy that achieves real-time topology protection while maintaining the utility of
measurements for trusted users. Our approach effectively defends against both
current and emerging topology inference techniques, ensuring robust privacy
without compromising network monitoring capabilities. Extensive evaluations
on simulated and real-world networks topology demonstrated the framework’s
superior privacy protection, usability, and computational efficiency, making it
practical for deployment in real-world scenarios. This work addresses critical
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Table 2. Execution time (seconds) comparison of protection methods across different
network topologies.

Low Congestion High Congestion

Topo.
Alg. AntiTomo Proto SecureNT AntiTomo Proto SecureNT

γ = 0.4 γ = 0.6 γ = 0.4 γ = 0.6

CHINANET 140.32 115.47 108.40 98.40 184.75 143.45 124.12 105.34
GANET 130.21 102.67 95.56 86.92 165.43 128.90 110.34 92.45
ERNET 135.43 108.78 98.34 90.62 170.78 135.34 115.67 97.23

AGIS 125.89 95.54 90.67 82.32 158.54 120.32 105.45 88.76

challenges in network security and monitoring, providing a foundation for future
advancements in balancing privacy and performance in large-scale networks.
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