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Abstract—Variational autoencoders (VAEs) have
been deployed in many privacy-sensitive domains, and
their vulnerability to membership inference attacks
(MIAs) poses giant privacy risks. While some existing
privacy protection methods like differential privacy
often compromise generative models’ utility, we present
GuidedLatent, a novel mechanism that enhances mem-
bership privacy and preserves their generative perfor-
mance. GuidedLatent allows the model to adjust la-
tent representations dynamically based on distribution
similarities, coupled with a two-phase training strategy
that gradually incorporates privacy constraints. We
also establish bounds on the privacy-utility trade-off
theoretically and prove our mechanism reduces the per-
formance of membership inference attacks compared
to other baseline approaches. Extensive experiments
demonstrate that our method maintains high-quality
generation capabilities while minimizing degradation
in quality metrics. Our method performs effectively
across various VAE variants and architectures, provid-
ing a practical solution for privacy-preserving genera-
tive models. '

Index Terms—Membership Inference Attack, Vari-
ational Inference, Variational Autoencoder (VAE),
Privacy-Preserving Machine Learning

I. INTRODUCTION

Deep generative models have become powerful tools
for data synthesis and representation learning, making
increasing differences to sensitive domains such as health-
care imaging, biometric authentication , and personal data
processing [16]. However, their deployment has raised sig-
nificant privacy concerns regarding the potential leakage
of sensitive training data through membership inference
attacks (MIA) [22], where adversaries attempt to deter-
mine whether individual data samples have been used for
training models.

The vulnerability of generative models to MIA origi-
nated from their learned representations and generation
patterns. During training, these models naturally develop
statistical patterns for processing and generating data that

1This work was done during Chengze’s internship at Zhipu.
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Fig. 1. Overview of VAE architecture and membership inference

attack. (a) The standard VAE framework consists of an encoder
q¢(z|z) that maps input data to latent distributions parameterized
by mean pg(x) and variance o4 (x), followed by sampling through
the reparameterization trick to get the z, and a decoder pg(z|z)
that generates output data. (b) The membership inference attack
framework, where an adversary uses an attack model to determine
whether a query sample X was used in training the VAE by analyzing
the model’s behavior fg ¢(X) on the sample.

are similar to training samples, thus creating exploitable
differences between how the model handles training versus
on-training samples [18]. This behavior is essential for
high-quality generation but also provides reliable signals
for membership inference attack, posing significant risks in
privacy-sensitive applications where the confirmation of an
individual’s data being used in training [21].

Recent advances in privacy-preserving machine learning
have shown various defense mechanisms against member-
ship inference attacks [19]. Some methods [2], [7], [8] based
on differential privacy have become a theoretical corner-
stone, offering mathematical guarantees through scaleful
noise injection during training. Parallel developments in
regularization-based approaches [17] leverage additional
constraints to mitigate overfitting, and some adversar-
ial training frameworks [30] optimize models explicitly
against membership inference through discriminator net-
works. Knowledge distillation [14] techniques further ex-



pand these defenses by transferring representations from
private teacher models to public student models, obscuring
individual training instances by distillation. Despite these
methods having advanced in general privacy preservation,
the special characteristics of VAEs present additional chal-
lenges that require unique solutions.

As seen in Fig 1, present methods on privacy-preserving
VAEs struggle to preserve important latent space char-
acteristics. Traditional privacy mechanisms often fail to
address these unique requirements of variational models.
Differential privacy techniques, while protecting individual
samples, but also degrade latent representation quality
[3].Likewise, regularization techniques can break the vital
balance between ELBO goals, and adversarial strategies
could compromise variational training. This creates an
unnecessary trade-off between privacy protection and gen-
erative quality in applications requiring both, undermining
the fundamental advantages of VAE architectures.

To address these challenges, we propose a novel mech-
anism (GuidedLatent) for privacy-preserving VAEs im-
proves membership privacy while maintaining generative
power. And our approach consists of three main com-
ponents. Firstly, we introduce a controlled distribution
mechanism that adjusts latent representations based on
cluster-wise similarities, which is used to obscure indi-
vidual sample characteristics while maintaining seman-
tic structure.Secondly, we develop a two-phase training
strategy that the model first learns basic data represen-
tations before gradually incorporating privacy-preserving
modifications, which helps to maintain training stability.
Thirdly, we provide theoretical analysis of the privacy-
utility trade-off for our mechanism, establishing bounds on
membership inference attack success rates using Hellinger
distance related to training and test sample distribu-
tions.Unlike previous approaches that rely primarily on
noise injection or generic regularization, our mechanism
leverages the inherent semantic relationships between data
samples to create more robust privacy-preserving latent
representations. At the same time, our method also have
better performance in defending against membership in-
ference attacks while maintaining high-quality generation
capabilities across various domains.

The main contributions of this paper are as follows:

1) Novel Privacy-Preserving mechanism: We pro-
pose a mechanism for VAEs that enhances privacy
through controlled modification of variational poste-
rior distributions. Our approach uses cluster-based
distances in the latent space to adjust represen-
tations while maintaining the model’s generative
capabilities.

2) Technical Innovations: We introduce three key
technical components: (a) a controlled distribution
mechanism that dynamically adjusts latent represen-
tations based on semantic similarities, (b) a phase-
wise training strategy that ensures stable learning
of privacy-preserving features, and (c) theoretical
bounds that quantify the privacy-utility trade-off in
the variational framework.

3) Comprehensive Evaluation: We perform exten-
sive experiments on several datasets to show that
our method: decreases MIA performance by as much
as 18.2% under baseline VAEs while preserving high
reconstruction quality, and generalizes across various
VAE variants and architectures.

II. RELATED WORK

Attacks A major privacy risk in machine learning is
membership inference attacks, which were firstly come up
with was in the groundbreaking work of Shokri et al.
[22]. Black-box settings [21], [23], where attackers only
access model predictions, and white-box settings [18], [20],
where model parameters and intermediate computations
are available to attackers. All of them are the attack
scenarios that were established by early research [9], [28],
[31].

The landscape of membership inference attacks evloves
with the rise of generative models, particularly in the con-
text of VAEs and their variants [10], [11]. Recent studies
[5], [6], [32] have revealed that generative models exhibit
unique vulnerabilities to MIA, stemming from their fun-
damental objective of learning and reproducing data dis-
tributions. Groundbreaking work [10] demonstrated that
attackers can exploit the reconstruction quality and latent
space characteristics of VAEs to achieve high membership
inference accuracy. In white-box settings [1], attackers can
directly analyze latent representations to identify train-
ing samples, as these tend to form distinctive clusters
with measurable statistical properties. Black-box attacks
[32] have become increasingly sophisticated with methods
such as multi-query usage for aggregating model outputs,
making use of reconstruction errors as measures of confi-
dence, and exploiting generated sample consistency. These
improvements make it critical that privacy protection
processes are robust, being specially adapted to generative
architecture.

Defense Machine learning privacy preservation has
been realized by a series of methods, with differential
privacy (DP) as an essential framework that offers formal
privacy protection guarantees [2], [7], [8]. Conventional
DP techniques add calibrated noise to model gradients
or parameters during training time, which has the effect
of obscuring the contribution of individual training ex-
amples [16]. Aside from DP, other researchers [12], [17],
[24] have also discussed other regularization mechanisms
that avoid overfitting and memorization like dropout and
weight decay, that indirectly impose privacy by making
the models generalize well. Knowledge distillation [14],
[27] mechanisms try to map learned distributions into a
student model while hiding particular training samples,
and adversarial training mechanisms [30] actually hamper
the effect of any membership inference attacks by adding
an adversarial discriminator as part of the training.



III. BACKGROUND

A. Variational Autoencoders

Variational Autoencoders (VAEs) represent a powerful
class of deep generative models that combine variational
inference with deep learning to learn complex data distri-
butions. Two primary components of the VAE architecture
cooperate: a decoder network reconstructing the input
from the latent coding and an encoder network mapping
input data to a probabilistic latent representation.

For the encoding process, given an input sample x, the
encoder network g4(z | &) maps it to a probability distri-
bution in the latent space, parameterized as a multivariate
Gaussian distribution z ~ g4(z]z) = N (z; pg(x), 03 ().
Then the encoder outputs both mean p4(x) and variance
ai(x) parameters. The latent code z is then sampled
from this distribution using the reparameterization trick:
z = py(x) + o5(x) O, where ¢ ~ N(0,I), and then
this sampled latent code is passed to the decoder network
pg(x | 2), which reconstructs the input by learning to map
the latent representation back to the original data space.

VAEs are trained by using the evidence lower bound
(ELBO), which consists of two terms: a reconstruction
term that ensures high-quality data reconstruction, and
a regularization term that encourages the learned latent
distribution to match a prior distribution p(z), typically
chosen as a standard normal distribution:

Lyap(0,0) =Ey, (z12)[log pe(x|2)] — D r(q4(2|z)|[p(2))

regularization term

(1)

reconstruction term

B. Membership Inference Attack

Membership inference attacks threaten VAE privacy by
identifying whether specific samples were used in training,
exploiting the more accurate reconstruction and consistent
latent representations of training data. Formally, given a
query sample x, a model V with parameters 6, and an
attacker with knowledge level IC, the attack aims to classify
x as belonging to either the training set Diain Or non-
training set Dpon-mem- Attack success varies based on the
attacker’s access level, from complete model parameters to
only input-output observations.

The attack mechanism can be formalized using a dis-
crimination threshold 7 to separate member from non-
member samples. The decision rule for the attack is as
follows:

T € Dirain, if ®(x, ) >71

otherwise

M(z,V,K) = { (2)

X e Dnon—mema

®(z, ) represents the attack score, which varies de-
pending on the attacker’s knowledge K. In white-box
scenarios, where the attacker has full access to the model
parameters 6, the attack can exploit all aspects of the

VAE’s behavior. The score function in this case can be
expressed as:

Pwhite(z,K) = h (|l — Vo (@)||2, E.nqozla) [ |2]]];
Dxw(qé(2]7)[Ip(2)); 6)

where h is a scoring function that combines reconstruction
error, expected latent norm, and KL divergence to assess
membership likelihood. In contrast, black-box attacks,
where the attacker only has access to input-output ob-
servations, must rely solely on the reconstruction charac-
teristics of the model. The attack score in this case is:

dblack(z, ) = g (||z — Vo(2)||2) (4)

3)

where ¢ is a monotonic function that maps reconstruction
error to membership likelihood, typically implemented as
a simple thresholding or scaling function.

IV. PROPOSED METHOD AND ANALYSIS
A. Privacy-Preserving Distribution Modification

We propose a novel approach to enhance privacy in
VAEs by systematically modifying the learned latent dis-
tributions while preserving generation capabilities. Our
method builds upon the observation that VAEs naturally
learn semantically meaningful representations where sim-
ilar data samples are mapped to similar latent codes [13].
This property allows us use the natural cluster structures
that develop during early training phases to guide our
privacy-preserving changes.

The foundation of our approach lies in the controlled
modification of the approximate posterior distribution
produced by the encoder network ¢'¢(z|x). Rather than
using the standard encoded distribution parameters di-
rectly, we introduce a modified distribution:

q(2|z) = N(z; 1/ d(x), 0" ¢(x)) (5)

where the mean parameter ' ¢(x) is adjusted based on the
cluster structures identified during early training:

wo (@) = pg(@) + A Y welpe — po(@)) (6)
ceC

The cluster influence is weighted by similarity-based coef-
ficients using softmax normalization:

We =

exp(—|lpe(®) — pell?) %
> erec exp(—||pg (@) — per|?)
where C represents the set of cluster centers identified in
the latent space during the initial training phase, and .
denotes the mean of cluster ¢. To further enhance privacy
protection, we introduce controlled variance expansion
through a hyperparameter «:

o) = o~ og(a) ®)

The modified training objective maintains the core VAE
structure while incorporating our distribution adjust-
ments:

Liotar = —Eq) 2o log po(x2)] + Drcr(g5(2[2)lIp(2)) (9)
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Fig. 2. Comparison of latent space distributions. (a) Original
VAE latent space shows clear separation between training(Member)
(g (2|2 € Dyrain)) and test(Non-member) samples (gg (2|2 € Drest)).
(b) Our privacy-enhanced VAE produces more dispersed latent dis-
tributions with increased overlap between training and test samples,
making membership inference more difficult.

This formulation allows us to balance privacy protection
and generation quality through parameters A and a. The
training process follows a two-phase approach (Algorithm
1): first identifying cluster structures, then gradually ap-
plying privacy-preserving modifications to ensure stable
training.

B. Theoretical Privacy Guarantees

We begin by establishing the formal mechanism for
analyzing membership inference attacks against Varia-
tional Autoencoders (VAEs), building upon theoretical
frameworks established in prior literature [4].

Following established approaches in privacy analysis,
membership inference attacks can be formalized as a
binary hypothesis testing problem:

Definition 1. (Membership Inference). Given an input
sample x;, the membership inference problem is defined as:

Ho :
Hl X € Dnon—mem

The attack model M : (z, f(0)) — {out,in} outputs ’in’
if the query sample z is inferred to be in the training set,
and ’out’ otherwise. The performance of this binary classi-
fier can be evaluated through its true positive rate (TPR),
true negative rate (TNR), false positive rate (FPR), and
false negative rate (FNR):

TPR = E,, [P(M(z;, f(0)) = in|z; € Dirain)]
TNR = E,, [P(M(z;, f(8)) = out|z; € Dnon-mem )]

Assumption 1. Due to the KL divergence term in the
VAE loss function, the latent representations z; = Eg(z;)
of training samples x; € Di;ain are constrained to lie within
specific regions of the latent space. On the other hand,
test samples z; € Diest may map to regions outside these
learned clusters. Let P denote the distribution of distances
between the training sample encodings and their respec-
tive cluster centers, and let (Q denote the distribution for
the test samples.

The Area Under the Receiver Operating Characteristic
Curve (AUCQ) is used to evaluate the attack performance,
as it provides a threshold-independent measure of the

%; € Dgrain  (member)

(non-member)

Algorithm 1: Privacy-Preserving VAE Training

: Dataset X, initial VAE parameters 6, ¢,
hyperparameters a, A
Output: Privacy-enhanced VAE with parameters

9/7 ¢/

/* Phase 1: Initial Training and Cluster Analysis */

Input

1 for epoch = 1 to N;,; do
2 Update 6, ¢ using standard VAE objective;
3 if epoch = N;p;; then
4 Extract latent representations
Z = {ugla)la € X};

5 Identify cluster centers C = {u.} from Z;

/* Phase 2: Privacy Enhancement Training */
6 for epoch = Njnit + 1 to Niotar do
7 for each batch B C X do
8 Compute initial encodings pg(x), og(z) for

x € B;
/* Distribution Modification */

9 Compute similarity weights:

we = softmax(—||ue () — pel|*);

10 Update mean:
Hep(2) = pr () + A2 wepe — po());
11 Update variance: oy(z) = o~ 0g(z);
/* Model Update */
12 Sample z ~ N (uj(z), 0;(:5)2);
13 Compute

L = E[logp(z]2)] — Dx1(q4(2|2)||p(2)) ;
Update 6, ¢ using gradient of L;

14 return 0, ¢

attacker’s ability to distinguish between the distributions
P and Q. A higher AUC indicates that the attacker is more
effective at separating member from non-member samples
based on their distances in latent space.

Theorem 1. (Privacy Guarantee). For any membership
inference attack against our privacy-preserving VAE, the

attacker’s AUC is bounded by:
1
AUC< —D(P',Q") +V2Du(P', Q) + 5 (10)

where P’ and Q' represent the modified distributions
under our privacy mechanism.

Proof 1. According to Lin et al. [15], we have:
1 1
AUC < =5 Drv(P, Q)+ Dry(P,Q) + 5 (D
Using the result from [25], we obtain:

DTV(P/aQ/) < \/iDH(P/7Q/) (12)
For Gaussian distributions, the Hellinger distance is

given by:
! I 1\2
20102 exp (_1 (/’Ll :LLQ) ) (13)

D2 Pl, nN—1_
H( Q) o) +0_2 40,32_1_0_52



where }, oy represent the mean and standard deviation
of the modified training sample distribution P’, and pbh,
aby represent those of the modified test sample distribution
Q'. Substituting this into the inequality yields the desired
bound. ]

Corollary 1. (Privacy Enhancement). Under our distri-
bution modification mechanism, we have:

DH(P',Q") < Dy(P.Q)
where the Hellinger distance bounded between 0 and 1 [25].

Proof 2. (Privacy Enhancement) For Gaussian distribu-
tions, recall that:

20109 1 (1 — p2)?
DI(PQ)=1—,/ "= Stk S A
H( aQ) 0_%_’_0_% eXp( 4 0_%_’_0_%

Under the action of our mechanism, we make the value
of 1 decrease and the value of o1 — oo increase (detailed
in Section V-B). Given that |0 — 02| < |0] — 01|, we can
approzimate oy ~ oo. Using py — phy = (1 — ) (1 — p2)
and of =woy (w>1,0 <y < 1) to present this change,
then we have

~
~

201 %2 L (1=9)? (i —p2)?
2 / AN
Dy(P,Q)=1- O%jL:wzQeXp(_4. w? o} 4 222
<1 [ 20102 1 (=) (m—pe)?
- o+ o3 Py w? o2 + 022
<1 20109 1 (1 — M2)2
>1- 2, 29XP| 77 5 2
o1 + 03 4 o +o0;
= Di(P.Q)
(1-)*

where the inequality holds since *—~ <1 for w > 1 and
0 <~ <1, and exp(—cz) > exp(—x) for x > 0 and 0 <
c < 1. Therefore, combining with Theorem 1, we obtain:

1
AUC < =DH(P', Q') + V2Du(P', Q) + 5

1
2

Note that in our VAE setting, empirical analysis shows
Dy(P,Q) < 0.2, and the AUC bound function is mono-
tonically increasing in this region. Therefore, our privacy-
preserving mechanism effectively reduces the upper bound
of the membership inference attack’s AUC, thereby provid-
ing stronger privacy guarantees. ]

< —-D%(P,Q) + V2Dy(P,Q)

V. EXPERIMENTS

A. Ezxperiments Setup

1) Dataset and Models: We conduct extensive ex-
periments across multiple standard image datasets:
MNIST, Fashion-MNIST, and CIFAR variants includ-
ing CIFAR-10 and ImageNet-10. We implement CNN-
based and MLP-based VAE architectures. Additionally, we
evaluate our method on advanced VAE variants including
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Fig. 3. Comparison of latent space distance distributions before and
after applying our privacy-preserving mechanism.

Vector Quantized VAE (VQ-VAE) [29] and Batch Nor-
malization VAE (BN-VAE) [26] to demonstrate the gen-
eralizability of our approach across different architectural
choices.?

2) Defense Baselines: For comprehensive comparison,
we implement several baseline defense methods: Differ-
ential Privacy (DP-SGD), Dropout, and Early Stop.
The hyperparameter selection for all defend methods is
discussed in Section V-D (see Note). All models are
trained for 100 epochs with batch size 64, with specific
optimization settings for each VAE variant.

B. Analytical Insights

To better understand the effectiveness of our privacy-
preserving mechanism, we visualize the distribution of
distances between samples and their cluster centers in
the latent space. Figure 3 presents a comparative anal-
ysis of these distributions before and after applying our
method. In the original distribution (left), we observe a
clear distinction between training(Member) and test(Non-
Member) samples, with training samples exhibiting a no-
tably lower mean distance (p = 0.39) and tighter spread
(o = 0.05) compared to test samples (p = 0.82, o =~ 0.15).
This separation makes the model vulnerable to member-
ship inference attacks, as an adversary can exploit these
distinctive patterns. Following our privacy-preserving ap-
proach (right), the mean distances of training and test
samples align better; training samples show p 0.54
(o = 0.10) whereas test samples show = 0.68 (o =~ 0.15).
This reduced separation and increased overlap between
the distributions demonstrates that our method effectively
obscures membership information while maintaining the
underlying structure of the latent space.

C. Defend Attack

Our evaluation framework encompasses two distinct
attack scenarios: white-box (Wp, Wy) and black-box (B,
B1). Specifically, Wy and By represent the attack ap-
proaches proposed by Shokri et al. [22] and Chen et al. [5]
respectively, and W; and B; correspond to attack methods
introduced by Azadmanesh et al. [1] and Zhang et al.
[32], which have demonstrated superior performance in

2Code is available at VAE-Anti-MIA.
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TABLE 1
MEMBERSHIP INFERENCE ATTACK PERFORMANCE AGAINST DIFFERENT VAE ARCHITECTURES UNDER VARIOUS DEFENSE METHODS.

MNIST ‘ Fashion-MNIST
Model VAE-MLP VAE-CNN BN-VAE VQ-VAE ‘ VAE-MLP VAE-CNN BN-VAE VQ-VAE

m Wo/Bo  Wi/By Wo/Bo  Wi/By Wo/Bo  Wi/By Wo/Bo Wi /By ‘ Wo/Bo  Wi1/B1 Wo/Bo  Wi1/By Wo/Bo  Wi1/By Wo/Bo  Wi1/By
é No-defense 0.552 0.920 0.548 0.935 0.564 0.931 0.559 0.957 0.568 0.945 0.549 0.956 0.561 0.940 0.546 0.959
2 DP-SGD 0.539 0.771 0.520 0.789 0.531 0.790 0.520 0.781 0.522 0.790 0.511 0.780 0.518 0.791 0.510 0.744
] Dropout 0.544 0.789 0.521 0.793 0.542 0.774 0.535 0.795 0.569 0.763 0.559 0.794 0.551 0.786 0.530 0.760
= Early Stop 0.539 0.780 0.531 0.792 0.540 0.764 0.550 0.791 0.532 0.754 0.544 0.764 0.550 0.775 0.561 0.782
3 Ours 0.519 0.732 | 0.513 0.752 | 0.509 0.764 | 0.520 0.720 0.519 0.691 0.512 0.702 | 0.518 0.711 0.514 0.715
é No-defense 0.522 0.770 0.523 0.752 0.518 0.760 0.525 0.773 0.529 0.795 0.525 0.763 0.515 0.782 0.526 0.783
2 DP-SGD 0.518 0.682 0.518 0.683 0.509 0.680 0.508 0.661 0.511 0.674 0.508 0.640 0.517 0.650 0.506 0.621
3 Dropout 0.520 0.701 0.520 0.713 0.511 0.725 0.510 0.734 0.518 0.713 0.511 0.728 0.521 0.731 0.513 0.742
< Early Stop 0.511 0.742 0.513 0.752 0.514 0.764 0.515 0.773 0.523 0.753 0.514 0.765 0.515 0.772 0.519 0.784
m Ours 0.517 0.702 | 0.503 0.712 | 0.509 0.724 | 0.502 0.735 0.503 0.693 | 0.502 0.681 | 0.507 0.715 | 0.504 0.725

ImageNet-10 | CIFAR-10
Model VAE-MLP VAE-CNN BN-VAE VQ-VAE ‘ VAE-MLP VAE-CNN BN-VAE VQ-VAE

m Wo /Bo Wi1/By Wo /Bo Wi/By Wo /Bo Wi /By Wo/Bo Wi /By ‘ Wo /Bo Wi /By Wo/Bo W1 /By Wo/Bo W1 /By Wo/Bo W1 /By
% No-defense 0.623 0.954 0.631 0.935 0.634 0.937 0.695 0.970 0.630 0.950 0.643 0.960 0.635 0.972 0.656 0.983
2 DP-SGD 0.562 0.823 0.572 0.832 0.563 0.834 0.554  0.853 0.582 0.834 0.574 0.826 0.574 0.854 0.565 0.861
2 Dropout 0.593 0.849 0.591 0.892 0.573 0.863 0.603 0.850 0.580 0.853 0.593 0.879 0.595 0.933 0.615 0.883
= Early Stop 0.581 0.879 0.593 0.884 0.594 0.897 0.616 0.870 0.603 0.858 0.584 0.864 0.575 0.875 0.595 0.884
= Ours 0.537 0.772 | 0.547 0.781 | 0.527 0.783 0.558 0.773 0.542 0.793 | 0.523 0.783 | 0.533 0.784 0.558 0.805
% No-defense 0.574 0.982 0.572 0.995 0.563 0.962 0.550 0.970 0.532 0.962 0.545 0.963 0.542 0.963 0.563 0.984
2 DP-SGD 0.517 0.840 0.539 0.859 0.543 0.868 0.522 0.874 0.511 0.853 0.522 0.861 0.521 0.876 0.523 0.883
] Dropout 0.534 0.897 0.535 0.883 0.538 0.884 0.533 0.895 0.518 0.861 0.536 0.863 0.538 0.885 0.544 0.860
] Early Stop 0.552 0.873 0.537 0.876 0.541 0.836 0.540 0.863 0.511 0.843 0.537 0.850 0.527 0.832 0.533 0.846
M Ours 0.521 0.826 | 0.518 0.804 | 0.502 0.822 0.530  0.808 0.509 0.795 | 0.514 0.803 | 0.512 0.799 | 0.520 0.783

some datasets such as CIFAR-10 and ImageNet-10, as well
as in generating models. Additionally, we use Auxiliary
data samples to increase their attack performance. Table
I presents our experimental results across various VAE
architectures and benchmark datasets, providing a com-
prehensive comparison of defense effectiveness under these
different attack scenarios.

1) White Attacks: In white-box settings, our compre-
hensive experiments reveal several significant insights re-
garding defense effectiveness against membership inference
attacks. First, our novel defense method consistently out-
performs the traditional defense mechanisms of DP-SGD,
Dropout, and Early Stop with a significant margin in all
settings. This superiority is even clearer when the attack-
ers have access to the Auxiliary data samples [32], where
our method achieves considerably lower scores compared
to baseline methods.

The efficacy of our defense method exhibits fascinating
trends under different datasets and model architectures.
On simpler datasets like MNIST and Fashion-MNIST, all
defense methods work better compared to more challeng-
ing datasets like ImageNet-10 and CIFAR-10, which re-
flects that the complexity of the inherent data distribution
plays a major role in defense efficacy. Our method, how-
ever, maintains its relative superiority across all dataset
complexities, proving itself highly adaptable to different
data properties.

2) Black Attacks: In the case of black-box attacks, our
experimental results reveal several important observations
about the performance of various defense strategies. Al-
though black-box attacks are less successful than white-
box attacks in general, the vulnerability of undefended
models is still considerable. Our proposed defense strategy
shows excellent robustness against both standard black-
box attacks (Bp) and its advanced versions (B;), surpass-

ing traditional defense strategies under all tested settings.

A very interesting outcome is achieved in evaluating the
performance on various datasets. In terms of less complex
datasets such as MNIST and Fashion-MNIST, the dis-
tinction between our proposed method and conventional
baseline defenses (DP-SGD, Dropout, and Early Stop) be-
comes increasingly evident, particularly when it comes to
B; attacks. This indicates that our defense method has an
outstanding performance in defending against state-of-the-
art black-box attacks in image recognition tasks of high
importance. However, as the complexity of the dataset
increases (e.g., ImageNet10 and CIFAR-10), there is a
general decrease in the efficacy of defenses for all methods,
though our approach maintains its relative advantage.

VAE-CNN, BN-VAE, and VQ-VAE, which implies that
the proposed method is architecture-agnostic.

D. Utility

We evaluate the utility of different defense methods by
assessing their impact on the generative capabilities of
VAE models. Figure 4 presents a qualitative comparison
of generated samples across different defense methods
on MNIST and Fashion-MNIST datasets. Our method
produces visually sharper and more coherent images com-
pared to other defense approaches, particularly DP-SGD
which shows noticeable degradation in image quality.
The samples generated by our method maintain clear
digit structures for MNIST and distinct clothing pat-
terns for Fashion-MNIST, demonstrating that our privacy-
enhancing modifications do not significantly compromise
the model’s generative capabilities.

Figure 5 illustrates a thorough comparison of various
defense techniques’ effect on generative performance in
diverse VAE architectures, employing Inception Score (IS)
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Fig. 4. Comparison of generated samples using different privacy pro-
tection methods on MNIST and Fashion-MNIST datasets(Based on
VAE-MLP). Our method maintains high visual quality comparable
to other defense approaches.
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Fig. 5. Inception Score (IS) comparison of different defense methods
across VAE architectures (VAE-MLP, VAE-CNN, BN-VAE, and VQ-
VAE) on MNIST, CIFAR-10, Fashion-MNIST, and ImageNet-10
datasets. Higher IS indicates better generation quality.

as the main evaluation metric. Our experimental findings
illustrate that our proposed defense technique performs
better than baseline methods in all tested settings with
especially significant performance on the MNIST dataset
where it obtains IS scores of around 9.0 for all architec-
tural variations. This enhanced performance holds through
more challenging datasets (CIFAR-10, Fashion-MNIST,
and ImageNet-10), although with understandably lower
absolute IS values, showing that our method is able to
retain generative quality while providing enhanced privacy
protection. Interestingly, although VQ-VAE has slightly

better performance, especially on MNIST, the relative
performance tendencies still hold through different ar-
chitectural choices (VAE-MLP, VAE-CNN, BN-VAE, and
VQ-VAE), demonstrating the robustness of our defense
approach. The gap in performance between defense tech-
niques increases on smaller datasets such as MNIST, where
our technique demonstrates significant improvement over
DP-SGD (which always has the lowest IS scores of about
4.0), while this gap decreases but is still notable on harder
datasets such as CIFAR-10 and ImageNet-10.

Note: We observe a trade-off between privacy protec-
tion and generation quality controlled by hyperparameters
« and A in GuidedLatent, where larger values provide
better defense against membership inference but degrade
generation quality. Similar trade-offs exist in baseline
methods, with DP-SGD (e, §), Early-Stop (patience),
and Dropout (rate). Based on empirical evaluation, we
select balanced parameters a« = 1.5 and A = 0.01 for
GuidedLatent, and ¢ = 10, § = 107°, patience = 5,
dropout rate = 0.5 for baselines to achieve an optimal
privacy-utility balance.

VI. CONCLUSION

We present in this paper a mechanism for protecting
privacy in VAEs that is more resilient to membership
inference attacks at no cost to generative performance.
Our approach utilizes cluster-based latent space distances
to modify posterior distributions through a two-stage
training process that gradually introduces privacy modifi-
cations. Experiments demonstrate our approach provides
consistently lower scores to membership inference attacks
compared to baseline defense strategies across various
datasets and VAE architectures. We also provide theoret-
ical bounds with Hellinger distance to study the privacy-
utility trade-off, showing that our distribution adjustment
mechanism does hinder attackers’ inference capability. The
method performs particularly well on popular benchmark
datasets with decent generation quality, as corroborated
by IS scores. The results show that leveraging latent space
clustering for distribution adjustment is an effective way
to enhance privacy in variational generative models.
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