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Abstract

Network tomography plays a crucial role in assessing the operational status of internal links within networks through
end-to-end path-level measurements, independently of cooperation from the network infrastructure. However, the
accuracy of performance inference in internal network links heavily relies on comprehensive end-to-end path performance
data. Most network tomography algorithms employ conventional threshold-based methods to identify congestion along
paths, while these methods encounter limitations stemming from network complexities, resulting in inaccuracies such as
misidentifying abnormal links and overlooking congestion attacks, thereby impeding algorithm performance. This paper
introduces the concept of Additive Congestion Status to address these challenges effectively. Using a framework that
combines Adversarial Autoencoders (AAE) with Long Short-Term Memory (LSTM) networks, this approach robustly
categorizes (as uncongested, single-congested, or multiple-congested) and quantifies (regarding the number of congested
links) the Additive Congestion Status. Leveraging prior path information and capturing spatio-temporal characteristics of
probing flows, this method significantly enhances the localization of congested links and the inference of link performance
compared to conventional network tomography algorithms, as demonstrated through experimental evaluations.
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1. INTRODUCTION

As networks grow in size and complexity [1], sophisti-
cated and minimally invasive tools for network performance
assessment become ever more necessary. Network tomogra-
phy [2] is an innovative approach that leverages end-to-end
measurements(e.g., delays or packet loss rates) to infer the
status of internal network links by using information from
probing between source-end hosts.

Measuring the information of an end-to-end path perfor-
mance directly determines whether the performance status
information of the internal links in the target network can
be successfully inferred. When the end-to-end path perfor-
mance measurement is under perfect error-free conditions,
the performance parameters of the internal network links
can theoretically be accurately inferred. Nevertheless, in
real network environments, end-to-end measurements are
influenced by various error factors, forcing the path perfor-
mance parameters to deviate from their true values with a
certain error degree. Therefore, improving the overall detec-
tion accuracy of end-to-end paths is necessary to ensure the
reliability and effectiveness of inferring the performance
parameters of network tomography links and to obtain
more accurate path-performance parameter measurement
data.

End-to-end path performance parameter measurements
can be conducted either through active measurement or
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passive observation. Although the latter avoids introducing
any detection load cost, its limitations in operability and
controllability have promoted active measurement, which
is currently more commonly used.

Each method has a varying requirement for end-to-end
path performance measurement information. Specifically,
early network tomography relied on highly invasive probing
to deduce specific properties of links, assuming that if two
paths traverse a single, shared lossy link, their measured
path loss rates would be equal. For example, network
Boolean tomography [3] employed lighter probing methods
to infer the Boolean status of links based on rough path in-
formation. Such schemes rely on heuristic thresholds based
on delay and packet loss performance to determine paths’
binary congestion status (congested or none-congested).
New frameworks, such as Range tomography [4], utilize
multiple detection data from end-to-end paths, e.g., packet
loss rates and available bandwidth, to balance probing cost
and accuracy.

Based on a simple observation in normal network scenar-
ios, a congested link will cause all paths passing through
it to become congested. Therefore, network Boolean to-
mography extracts the link status by reversing the binary
path status through methods like Maximum-Likelihood
estimation or greedy inference. Consider the example
network shown in Figure 1, where paths {y1,y2,ys} tra-
verse through five links {z1, x2, z3, 24, z5}. In traditional
Boolean tomography, a congested link causes all paths pass-
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Figure 1: Illustration of Addictive Congestion Status (ACS) based network boolean tomography for congested link identification.

(a) A

network composed of four links and three paths. The observed status of each path is quantified by their loss rates. (b) Diagnosis performance
comparisons of different network tomography schemes. (c) Ilustration of the enhancement when applying ACS for path status quantification

compared to conventional boolean ones.

ing through it to become congested, leading to binary path
states B = R\/ X. However, this approach is ill-posed, as
multiple sets of congested links (solutions) often match the
observed congestion on the end-to-end paths, limiting its
diagnostic performance.

It should be noted that once a path traverses multiple
congested links, its packet loss rate and communication
delay are much higher than those of a single congested link.
For instance, in Figure 1(a), path y; has a 9% packet loss
rate traversing one congested link, while path y3 shows a 6%
loss rate passing through two congested links. By leveraging
this difference, we propose Additive Congestion Status
At = R- X to quantify the number of congested links in
each path. Through deep learning inference that captures
both spatial dependencies between paths and temporal
patterns in congestion, we can more accurately identify the
true congestion pattern. As illustrated in Figure 1(b), this
additional information helps reduce the solution space and
improves diagnostic accuracy, achieving better precision
and recall compared to Boolean approaches.

Based on this, this paper distinguishes and identifies the
congestion status of paths by proposing a metric called
Addictive Congestion Status and a method to measure it.
Qualitatively, the metric encompasses three status: none-
congested, single-congested, and multi-congested. Quanti-
tatively, it represents the number of congested links on the
path. Furthermore, we develop a new observation frame-
work integrating adversarial autoencoders [5] with Long
Short-Term Memory (LSTM) networks to refine the net-
work tomography process. This hybrid approach leverages
the adversarial autoencoder’s ability to learn complex, non-

linear representations of network paths and the LSTM’s
proficiency in capturing temporal dependencies within the
path measurements. This strategy accurately identifies
the Addictive Congestion Status qualitatively and quan-
titatively. Finally, we validate the contribution of Addic-
tive Congestion Status to existing methods by selecting
three classic network tomography algorithms: Netscope
[6], CLINK [7], and Sum-Tomo [4], which respectively be-
long to Analog Tomography, Boolean Tomography, and
Range Tomography. The results demonstrate a signifi-
cant improvement in the accuracy of network tomography
techniques regarding congested link localization and link
performance inference. The major contributions of our
work are summarized as follows:

e Novel Hybrid Model We introduce a new method
that combines adversarial autoencoders (AAE) with
LSTM networks to redefine the Addictive Congestion
Status (ACS) and improve network traffic classifica-
tion and quantification by leveraging spatio-temporal
characteristics.

e Enhanced Network Tomography Performance
The proposed approach significantly improves network
tomography, reducing false and missed congestion de-
tections and improving metrics such as recall, preci-
sion, F1 score, and normalized root mean square error
(NRMSE) in link performance inference.

The remainder of this paper is organized as follows.
Section 2 reviews related work in network tomography
approaches and deep learning applications. Section 3 in-
troduces the network model and presents our proposed



framework, including the Additive Congestion Status and
probing flow mechanism. Section 4 details our methodology
for combining LSTM networks with adversarial autoen-
coders. Section 5 presents our experimental evaluations
and comparative analysis. Finally, Section 6 concludes the
paper and discusses future research directions.

2. RELATED WORK

Network tomography methods have evolved significantly
over time. Analog network tomography uses invasive prob-
ing methods to obtain as many messages as possible to
solve the under-constrained linear equations between links
and paths [8]. Most methods employ additional opti-
mization and constraints to enhance their performance
[9; 6; 10; 11; 12]. Tt should be noted that analog methods
impose high requirements in probing and computational
resources [3]. Besides, Boolean tomography adopts binary
path measurements to deduce the link status ("Bad’ or
'Normal’) [13; 3; 14; 15]. This method reduces the data vol-
ume and privacy intrusions at the expense of measurement
precision [16]. However, considering that the adaptability
of different network services to different congestion levels is
vastly different, some new network tomography frameworks,
such as Range tomography, identify the boolean status and
the congestion range [4]. Furthermore, some recent papers
[17; 18] focus on attack methods targeting network tomog-
raphy monitoring, which increase the forwarding delay on
victim links to manipulate the inferred results of network
tomography. Recently, machine learning approaches have
shown promising results in network tomography. Several
studies [19; 20; 21] employ deep neural architectures like
Graph Neural Networks to infer network structures or pre-
dict path performance, offering enhanced scalability and
adaptability to diverse network conditions. Our combined
LSTM-AAE framework significantly improves network to-
mography accuracy by properly identifying path congestion
status through spatio-temporal learning approaches.

Long Short-Term Memory [22] (LTSM) networks are
a specialized form of recurrent neural networks uniquely
designed to address the challenges associated with learn-
ing from data sequences [23]. Their architecture enables
them to remember information for long periods, essen-
tial for capturing the temporal dependencies inherent in
network data. Several existing works have demonstrated
the appealing performance of LSTM in prediction and
classification problems [24; 25; 26; 27; 28; 29], demonstrat-
ing a very low error rate in predicting epidemic diseases
[30; 31; 32]. Subsequently, LSTM has been integrated with
other modules. For instance, Firzt [33] combined GNN
and LSTM to predict COVID-19 cases in Germany. Chen
[34] proposed GC-LSTM, a Graph Convolution Network
(GC) embedded LTSM for end-to-end dynamic link pre-
diction. Li [29] combined convolutional neural networks
(CNN) and long short-term memory to predict the Nev
sales and charge infrastructure ownership, which shows the

best performance in using computing power. Sun [28] intro-
duced a deep learning model based on LSTM to improve
the shortcomings of existing automatic driving trajectory
planning systems, which enhances both the accuracy and
safety of the output trajectories. Alternatively, adversarial-
LSTM and LSTM-adversarial autoencoders use LSTM to
train the latent space produced by autoencoder [35], and
our work is different from them.

3. PRELIMINARIES

3.1. Network Model

Network topology is considered an undirected graph
G = (N, L), where nodes A/ can be routers, switches, and
hosts. The source node is typically the host that sends the
data flow, while the edge node usually receives the data
flow. The direct connection between nodes is called a link
[, and the set of all links in the topology is £. A data flow
from the sending host to the receiving host often passes
through multiple nodes, traversing several unknown links.
Besides, a path p is an ordered set of links between a pair
of source and edge nodes, and the set of all paths in the
topology is P.

To better express the relationship between paths and
links, a routing matrix R is employed to elucidate. The
routing matrix is a two-dimensional Boolean array of size
|P|x|L|, where the row coordinates represent path numbers,
and the column coordinates are link numbers. If the number
in the i-th row and j-th column of R is 1, the i-th path in
the network topology includes the j-th link. The set of row
coordinates with the number 1 in the n-th column vector
represents the set of link coordinates that the n-th path
routes through.

Before clarifying the Path Congestion Statues, it is nec-
essary to state the following three assumptions:

1. R does not change during the measurement process,
and observations that do not match R are discarded.

2. The states of the links are independent of each other
and do not affect each other.

3. The network status remains stable and does not change
drastically over a period of time.

3.2. Probing Flow

The probing flow mechanism was initially used to mea-
sure a path’s available bandwidth by identifying it based
on the characteristics of the probing flow. It is catego-
rized into a GAP model and RATE model based on the
construction of the probing flow [36], which is achieved by
increasing the probing flow size to induce self-congestion
while considering the probing flow size at the moment of
self-congestion as the available bandwidth. This approach
often exacerbates the congestion situation on links.

The probing flow features include packet delay size, vari-
ance of all delays, changes in packet gaps, and packet loss
rate. This work aims to capture the congestion status of a
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Figure 2: Illustration of the probing flow.

path through these characteristics, namely, how many links
along the path are congested. Fig. 2 highlights that the
developed framework adopts an exponential packet-sending
mechanism where the interval between each packet sent
is ™, o™, a2, a. Compared to constant intervals, expo-
nential intervals use the same number of packets but are
less intrusive [37]. Thus, we present « to limit the average
probing flow rate to 1%. For experimental verification,
refer to Section 5.

For each probe packet i, with a send time ¢;, and receive
time t; , we concatenate the packet delay (¢;. — ¢;_), the
ratio of packet reception interval (t;411. —t;.)/(tit1, — ti.),
and the packet loss rate to form the probing flow. Sending
M consecutive probe packets constitutes one probing action,
which takes time Ts. We conduct N probing actions within

N

the probing period Tp, where Tp = > Ts. The values of

M and N are chosen to satisfy the requirements of the
network state’s dynamic changes.

4. METHODOLOGY

4.1. Addictive Congestion Status

The proposed model involves two states for link status:
congested and uncongested, with the path state determined
by the collective states of all links that comprise it. If any
link within a path is congested, the entire path is considered
congested. Conversely, a path is none-congested only if all
its links are in a none-congested state. We introduce z;
and y; to represent the boolean states of the i-th link and
the j-th path, respectively. Specifically, x; = 1 indicates
that the i-th link is congested, and z; = 0 indicates that
the link is not congested, while we have

(1)

A 0, none — congested for Zlijpj x; = 0;
Yi = 1, congested for Ealj x; > 1,
where I; < p; means the i-th link routed by the j-th path.
For the sake of the qualitative analysis, the Addictive
Congestion Status (ACS) is introduced and comprises
three types: none-congested, single-congested, and multiple-
congested. Additionally, the .A;r directly corresponds to
the number of congested links in the j-th path and is
mathematically formulated as follows:

Aj' = Z xi, (2)
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Figure 3: A brief comparison between the boolean and ACS based
tomography. (a) Average distance between the tomography result
and the true one. (b) Differences between the boolean and the ACS
based solution spaces.

while we also derive

0, none — congested for A;r = 0;
A; £ ¢ 1, single — congested for .A;' =1 (3)
2, multiple — congested for .A;-' > 2.

For the sake of discussion, we specifically mark A =
(AT, AF, A, --+) as ACS+ for all observed paths.

Let vectors Y and X represent the path and link states,
respectively. Then, the Addictive Congestion Status (A)
and Boolean Congestion Status (B) are calculated as

A" =R-X; (4)
B=R|JX, (5)

where - denotes the dot product and J is an element-
wise logical OR operation between the products of the
corresponding elements of the two vectors, and X =
(21,2, 23,- ) collects all unknown links’ statuses.

Unlike the BCS information (congested or not congested),
ACS utilizes more granular path congestion information to
assist the existing network tomography algorithms in diag-
nosing congested links or inferring link performance. Fig.
3b illustrates the proposed scheme, where the green and
red areas represent the solution spaces satisfying the path
congestion observation constraints and ACS constraints,
respectively. It is evident why the red area is smaller than
the green area, as satisfying ACS inherently satisfies BCS,
but the reverse is not true. If the solution of a network
tomography algorithm does not meet the ACS constraints,
i.e., it lies outside the red circle, the algorithm must adjust
its solution until it meets ACS. When path congestion
observations are accurate, the true solution (the actual con-
gestion status of the link) will be at the bottom of the red
circle because it satisfies both ACS and BCS constraints
and has the smallest distance to itself, which is zero. For
this case, distance is defined by

> 1 (zi = x7)

d(z,z;)=1-— B e— (6)



where z; and z) are the true i-th link state and the al-
gorithm’s estimated i-th link state, respectively, and n is
the number of links in the topology. Through simulations
conducted under different topologies and congestion proba-
bilities (see 5.1 for experimental setup). As depicted in Fig.
3a, the average distance between all solutions within the
ACS-constrained solution space and the true solution is
smaller than the average distance between all solutions that
satisfy only the BCS constraint but not the ACS constraint
and the true solution. This infers that solutions meeting
the ACS constraint are closer to the true solution than
those satisfying only the BCS constraint.

Proposition 1. Va,3db’, such that
d(a,b’) < d(a,b) = M (a,b’) > M(a,b)

M(a,b) represents the performance metrics (such as
recall, precision, and F1-score).

Proof: If V' has a smaller distance to a than b: d(a,b’) <
d(a,b).

This implies: Y., 1(a; =b}) > >0 1(a; =b;).

In order to understand how this impacts the performance
metrics, consider the implications on True Positives (TP),
False Positives (FP), and False Negatives (FN): b’ has more
elements where a; = b, = 1; therefore: TP}, > TPy,

Similarly, for FP and FN: FPy,, < FPy,, FNp < FNy,.

Given these relationships:

Recall increases or remains the same as TP increases

_ TPb/ _ 1
and FN decreases. Recally = 75Ty, = Ny 2
TPb,
1 _ TPy =R
= = Recall},.
FN, — TP, +FNy
1+TPb s e . . :
Precision increases or remains the same as TP increases
. o TPy, _ 1
and FP decreases. Precisiony, = TP, 5Py [ 5w =
TPb/

1 TP,

= = Precision
FP b-
1 Pz TPL,+FPy

F-score increases or remains the same since it is the
harmonic mean of precision and recall, both of which

have increased or remained constant. [Fg-scorey, =
(1+ﬁ2)<Prccisionb/-Rccallb/ o 1 >
32-Precisionys +Recally/ - 52 + 1 =
(1+82)-Recally, ' (14B2)-Precision;/

1 _ (14p8?)-Precisiony,-Recally,

B2.Precisiony, +Recally,

52 -

(1+52)-Recallb +

Fg-scorey,.
The above validation demonstrates that the algorithm

performs better when the ACS constraint is included. W

1
(1+82) Precisiony,

4.2. Long Short-Term Memory Network

The LSTM network, a specific type of the Recurrent Neu-
ral Network (RNNs), operates by passing information from
previous time steps to the current time step. LSTM has
demonstrated impressive performance in handling spatio-
temporal sequence problems. Its cell structure is metic-
ulously designed to overcome the vanishing or exploding
gradients problem that RNNs face when processing long
sequences.

The developed scheme considers the number of probing
actions completed within the probing time Tp as the num-
ber of time steps in the LSTM network and the amount
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Figure 4: Illustration of the LSTM cell.

of data collected during each probing action as the length
of each time step. All observational data are normalized
before being input into the model for training.

The LSTM network primarily comprises three stages:

1. Forget Gate: Used for selectively forgetting the out-
put from the previous time step, ¢;_1. Its function can
be interpreted as “forgetting the unimportant”. z¥
acts as the forget gate control.

2. Input Gate: Selectively remembers the input for the
current time step, F}. Its function can be interpreted as
"remembering the important”. 2! acts as the memory
gate control, participating in the update of the cell
state to obtain the new state c¢;.

3. Output Gate: Determines the output value f; based
on the cell state at the current time step.

4.8. Adversarial Autoencoder

Adversarial Autoencoders (AAE) [5] combine Autoen-
coders (AE) [38] and Generative Adversarial Networks
(GANs) [39] to learn target data distributions. Autoen-
coders use an encoder to compress input data into a low-
dimensional representation and a decoder to reconstruct the
original data, minimizing reconstruction error [40]. GANs
consist of a generator producing realistic fake data and a
discriminator distinguishing real from fake data [41], im-
proving data quality through adversarial training. AAEs
leverage these mechanisms for effective data representation
and generation.

Based on the data obtained from the detection flow, F,
the feature equation of the adversarial autoencoder based
on LSTM is defined as: f(F) = F. In the autoencoder,
the encoder and decoder are mirrors of each other, i.e.,
F = D(E(F)). Considering that the congestion character-
istics of each time slot often correlate with the congestion
characteristics before and after it, LSTM is employed as a
part of the encoder and decoder. This strategy effectively
encodes input data with temporal dependencies into the
latent space, where F’ and F,,, are compressed represen-
tations of F' from the latent space. We incorporate the
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Figure 5: Overview of our proposed scheme. It has two phases: one is illustrated on the left side, for the process of end-to-end measurements
and data collection; the other is depicted on the right side, for the ACS path status identification/inference via AAE-LSTM based deep
learning. Left: The Measurement Phase collects probe traffic data over period Tp with measurement windows Ts. Right: The Inference
Phase processes this data through an encoder-decoder LSTM structure and a discriminator, outputting both reconstructed probe data (F) and
Additive Congestion Status (Feat), guided by loss functions Lres and Lggy-

GAN into the autoencoder to regulate the latent space’s
data distribution. This ensures that the distribution of the
encoder’s encoded results conforms to the distribution of
Addictive Congestion Status information.

The training process of the proposed method is divided
into the following two parts.

Reconstruction Process: The autoencoder is trained
by minimizing the difference between the input and the re-
constructed output (e.g., using reconstruction error). Mul-
tiple LSTM layers are stacked in the encoder portion, where
LSTM learns the temporal dependencies in the sequence
through its internal state (hidden state and cell state),
thereby converting the input sequence data into a fixed-
size latent representation [42]. Then, the decoder decodes
this latent representation back into the original data space.
Besides, the compressed vector from the encoder passes
through the dense and softmax layers, generating contin-
uous vectors F' and probability distribution vectors F,,,
respectively. Although both vectors possess the character-
istics of observational data, F' is used for subsequent data
reconstruction, while F. , is utilized for classification and
specifically for ACS recognition.

Adversarial Process: The latent representation is in-
put to the adversarial network, which aims to differentiate
between the distribution of the latent representation and
the target distribution. The encoder in the autoencoder
acts as the generator, attempting to produce latent rep-
resentations that match the target distribution [43]. At
the same time, the adversarial network tries to distinguish
whether these representations are from the target distribu-
tion. The adversarial process aims to make the distribution
of F! ., approach the true distribution of Addictive Conges-
tion Status. Both the reconstruction loss and adversarial
loss are defined as follows:

Ebccea,N (Dl(}—cat)a 1))+
LE ma(Frean)(DH(Fcat), 0));

LS S =Ly (DY (F), 1)) + L7 (B, F).

Eadversarial
D1

These losses will be used to guide the training of our pro-
posed AAE-LSTM neural network as depicted in Fig. 5,
as similar to the parameter estimation of conventional
regression problems like curve fitting.

4.4. Owverview of ACS-based Network Tomography

Figure 5 illustrates our proposed two-phase framework
for network congestion identification. In the measurement
phase, probe traffic is sent through different network paths
to collect path performance metrics over time Tp, with
each probing action taking time T,. The inference phase
then processes this data through our deep learning archi-
tecture. Specifically, the collected probe information F is
first fed into an LSTM encoder to capture temporal de-
pendencies. The encoded features then pass through two
parallel branches: one branch uses a dense layer followed
by a decoder to reconstruct the input data for training
stability, while the other branch employs a softmax layer to
generate the Additive Congestion Status classification. In
the adversarial training process, we sample from the true
link congestion probability distribution to obtain real ACS
labels, and train the discriminator to distinguish between
these real samples and the predicted ACS from our model.
This encourages the model to generate ACS predictions
that match the underlying network congestion probability
distribution, improving the accuracy of congestion status
identification.



Algorithm 1: Adversarial LSTM-based Addictive
Congestion Status (ALACS)

Table 1: Characteristics of four real networks used for numerical
simulations.

Input : routing matrix R, path set P
number of paths P, probing times A/

/* Monitor Paths’ Status */
1 Infer the sets of Paths’ Probing Information F < {J;
2 for t=1 to A do
3 foreach p; € P do
4 F;(t) + Probing and collecting the

Information ;
s | F<[FAF@=1,---, P}

/* Calculate Paths’ Congestion Status */

6 Initialize the sets of Paths’ Congesiton Status S «+ (J;

7 foreach p; € P do

8 A; <+ Obtain the Addictive Congestion Status
with model by {F;(t)[t =1, - ,N'};

9 A «— [A7 Aj];

/* Infer the links’ Performance */

10 Initialize the sets of links’ Performances by L < 0;
11 L + Network Tomography(F, R, A) ;
Output: L

5. Numerical Evaluations

This section demonstrates the impact of different detec-
tion flow settings on the experimental results and then
evaluates the algorithm’s ACS identification from both
qualitative and quantitative perspectives. Finally, model
ablation experiments prove the indispensable roles of LSTM
and Adversarial Autoencoders.

5.1. Network Setups

All experiments were conducted with real network topolo-
gies obtained from TopologyZoo [44], aiming to assess the
accuracy and reliability of identifying ACS. Each network
topology had a distinct structure, such as varying path
lengths and numbers of paths 1. The network event sim-
ulations were conducted with NS-3 (version 3.27) on a
server equipped with Intel Platinum 8383C Official Edition
CPU 40-Cores running Ubuntu 20.04 LTS. The duration
of congestion in each simulation instance was set to 5 min-
utes. All experimental data and related code are available
online!.

During the experiments, it was assumed that each link
in the topology has a certain congestion probability, which
is independent. Less than 20% of the available bandwidth
was used to determine whether a link is congested, i.e.,
when the available bandwidth of a link is between 100%
and 80%, the link’s status is considered normal. The
link is considered congested when the available bandwidth

Thttps://github.com/Monickar/ACS

W CHINANET AGIS GEANT ERNET
Metrics

#Paths 17 14 15 12

#Links 21 18 17 13
Average.Hops 3.9 3.6 3.6 3.25

Average.Weights 4.3 2.8 3.1 3

is less than 20%. The experiments were conducted on
two topology types: Homogeneous Topology, where all
links in the network have the same propagation delay and
bandwidth, both set at 20ms and 20Mbps, respectively and
Heterogeneous Topology, where the properties of links in
the network vary. The propagation delay and bandwidth
values follow a uniform distribution between 20 and 25.
Unless specified otherwise, each scenario in the experiments,
comprising the detection flow settings and the network
topology, is repeated 40 times.

The dataset used in this research consists of end-to-end
network measurements collected across multiple Topolo-
gyZoo network topologies (CHINANET, AGIS, GEANT,
and ERNET). We systematically varied the congestion
probability parameter (0.1-0.9) to create diverse network
conditions, collecting path-level metrics including delay dis-
tributions, packet loss rates, and throughput measurements.
The dataset was split into training (80%) and testing (20%)
sets, with a validation subset used for hyperparameter tun-
ing. To address class imbalance, we employed balanced
sampling during model training. The LSTM-AAE model
was trained using Adam optimizer (learning rate 0.001)
with dropout regularization (0.5) and early stopping to pre-
vent overfitting. Each scenario was repeated 40 times under
different network conditions, resulting in approximately
3,000 samples per topology.

5.2. FEwvaluations of ACS

5.2.1. Optimizing Probing Flow

Prolonged monitoring and excessive probing rates can
negatively impact network performance, while short-
duration and low-rate probes may not effectively capture
relevant network characteristics. We configured the probing
flows regarding probing duration ratio, Probe Traffic Band-
width, and windows number, aiming to find an optimal set
of probing settings to balance accuracy and intrusiveness.

Fig. 6 reveals the impact of the Probe Traffic Bandwidth
Ratio (obtained by comparing the probing bandwidth to
the end-to-end path bandwidth) and windows number on
the accuracy and stability of Addictive Congestion Status
identification. The area above indicates high accuracy (the
darker the color, the higher the accuracy), and the area
below represents the coefficient of accuracy variation (the
lighter the color, the better the stability). It is evident that
intense probing flows negatively affect background traffic
by causing congestion, while too weak probes fail to cap-
ture congestion characteristics. Additionally, an excessive
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Figure 6: Accuracy of ACS identification under different probing
conditions. Experiments were conducted in both homogeneous and
heterogeneous network setups.

probe step size causes issues like data loss and gradient
explosion in the LSTM model, while too small step sizes
limit the LSTM’s learning capability due to insufficient in-
formation, leading to poor training outcomes, low accuracy,
and stability. Notably, compared to homogeneous topology,
heterogeneous topology is more challenging in identifying
Addictive Congestion Status.

-~@- Accuracy(Homo) W+ FI (Homo) —~® - Accuracy(Hetero) ¥ F1(Hetero)

0.95

95% 60% 40% 20% 10% 5% 2% 1%
# of time ratio

Figure 7: Accuracy and F1 scores of ACS-based congestion diag-
nosis under varying probing duration ratios. The experiments are
conducted in both homogeneous (Homo) and heterogeneous (Hetero)
network environments, showing the impact of observation time on
model performance.

Fig. 7 illustrates the effect of probing duration on the
accuracy and stability of ACS using the accuracy and F1
score metrics to minimize the impact of sample imbalance
on the results. Spherical markers represent accuracy, and
triangular markers represent the F1 scores. The results
reveal that as the probing duration decreases, accuracy
and balance indices drop significantly when the observation

time is less than 40%. However, this is understandable, as
longer probing times capture more congestion feature infor-
mation. Regarding the balance between intrusiveness, cost,
and accuracy, the probing flow settings were 40% probing
duration, 1% of average bandwidth for probe intensity, and
a step size of 6.

5.2.2. Categorized evaluation

—— Hetergeneous

=T

—— Homogeneous

=)

T

e
o

None Congestion
=) o
S 8

4
2N

o

T

=4
o

P 7%

Single Congestion

e
>

1.0 @
g % X
S
2 f T
&b 09
0
=
15)
O 0s
2L
&
=07
=

0.6 -

Prcesion Recall F1 scroes

Figure 8: Distributions of precision, recall, and F1 scores across
three categories of congestion: None, Single, and Multiple. The
experiments are conducted in both homogeneous and heterogeneous
network topologies.

Congestion detection was considered a three-class prob-
lem, and we employed balanced sampling techniques for
model training. The proposed model was qualitatively
evaluated in both homogeneous and heterogeneous network
scenarios. The corresponding results are presented in Fig.
8, highlighting that our model exhibits high classification
performance, with precision, recall, and average F1 scores
all reaching or exceeding 0.95. However, compared to ho-
mogeneous topologies, heterogeneous topologies are more
challenging for the model due to the diversity of link prop-
erties, resulting in lower performance across all metrics. It
should be noted that the model demonstrates higher ac-
curacy in identifying none-congested situations. However,
distinguishing congestion further presents challenges for
the model.

5.2.3. Quantitative evaluation
As the path lengths and the complexity of heteroge-
neous topologies increase, accurately identifying the num-



ber of congestions in a path becomes challenging. For
instance, an algorithm might identify five congested links
in a path where there are actually six. Hence, to demon-
strate identification effectiveness, we use Relative Accuracy,
with Absolute Accuracy and Relative Accuracy denoted as

> (-
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respectively.
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Figure 9: Estimation accuracy comparison between absolute path
lengths (counting exact number of congested links) and relative path
lengths (normalized distance from true value) from both homogeneous
(a) and heterogeneous (b) network setups. The x-axis represents
different path lengths ranging from 4 to 10 hops.

Fig. 9 illustrates the relationship between the Absolute
and Relative accuracy and path length in homogeneous and
heterogeneous topologies. As path length increases, the
model’s absolute accuracy decreases, owing to the increased
classification difficulty linked to the growing number of
categories. However, the relative accuracy experiences
a smaller decline, indicating that the model maintains a
certain level of stability even as the data patterns become
more complex.

5.2.4. Ablation Studies

To validate the effectiveness of our proposed framework,
we conduct comprehensive ablation experiments comparing
three model variants: LSTM-only, AAE-only (replacing
LSTM with fully connected layers), and our combined
LSTM-AAE approach. Table 2 presents the comparison
results across multiple metrics.

In homogeneous networks, while LSTM-only achieves
89.0% accuracy by capturing temporal patterns and AAE-
only reaches 80.2% accuracy through distribution learning,
our combined approach significantly improves the perfor-
mance to 96.3%. This enhancement demonstrates how
LSTM’s temporal modeling complements AAE’s distribu-
tion learning. Specifically, LSTM helps track congestion
patterns over time, while AAE ensures the predicted con-
gestion status matches the underlying network probability
distribution.

The advantage of our combined approach becomes even
more prominent in heterogeneous networks, where single-
model approaches show notable performance degradation
(LSTM-only: 77.8%, AAE-only: 67.9%). In contrast, our
LSTM-AAE framework maintains robust performance with
91.4% accuracy. This demonstrates that the temporal de-
pendencies captured by LSTM and the distribution learning
from AAE work synergistically to handle complex network

conditions, addressing limitations of using either compo-
nent alone.

Table 2: Ablation results from both homogeneous and heterogeneous
setups of link prior congestion probability.

AAE LSTM Precision  Recall Fl-score ACC(%) R-Acc(%)
S V'] 09394003 0.9461003 0.9361004 89.0153  93.0131
g v 0.92740.09  0.93540.07 0.92610.0s 802499 89.416.9
T Vv v 09841901 0.981i902 0.981li001 963124 97.8:14
E): v 0.82910.03 0.833+10.02 0.8164003 77.8434 83.5132
g Vv 0.736+011  0.766+0.07 0.7121013 67.9+809  78.5190
é v v 0.949_ 902 0.953.001 0.947. 002 914130 94153

5.8. Performance Improvement

We verified the performance improvement of various al-
gorithms constrained by the solution space using ACS in
both congested link diagnosis and link performance infer-
ence (packet loss rate). Among the competitor algorithms,
CLINK [7] only has the function of congested link diagnosis.
Sum-Tomo [4] and Netscope [6] first infer the link perfor-
mance based on the observation information of end-to-end
paths and then diagnose congestion based on the inferred
link performance. For example, if a link’s inferred packet
loss rate exceeds 1%, the link is considered congested.

In congested link diagnosis, we measure the diagnostic
performance of the algorithms using recall, precision, and
F1 score. The x-axis represents different scenarios of link
congestion probabilities. The green, red, and blue plots rep-
resent the CLINK, Sum-Tomo, and Netscope algorithms,
respectively. The dashed lines are the performance results
without using ACS for the solution space constraints. The
smooth solid lines represent the performance results of algo-
rithms using qualitative ACS, and the solid lines with cross
markers represent the performance results of algorithms
using quantitative ACS.

Fig. 10 highlights that the performance of algorithms
without using ACS for solution space constraint signif-
icantly declines as the congestion probability increases.
Both the Sum-Tomo and Netscope aim to minimize the
number of congested links, leading to potential miss-
detections in high-congestion scenarios and consequently
decreasing recall, resulting in a final decrease in the F1
score. In contrast, CLINK, as a greedy strategy based on
the Maximum A Posteriori (MAP) algorithm that aims to
find the most probable set of congested links according to
the prior congestion probabilities of links, increases slightly
in performance when the average congestion probability
in the scenario exceeds 0.5. This is because its expected
number of congested links increases in the congestion prob-
ability interval of [0.5-0.9] to satisfy the MAP criterion,
thereby reducing miss-detections in high congestion scenar-
ios and increasing recall.

Furthermore, as the link congestion probability increases,
the performance improvement due to ACS also increases.
This is because ACS helps algorithms address the pain
points of uncertainty in network tomography by trimming
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Figure 10: Performance comparisons among different network tomography algorithms under various link congestion probabilities. The subscript
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the solution space, allowing the algorithms to avoid select-
ing sets with fewer congested links in scenarios with high
congestion probabilities. Thus, DR increases with increas-
ing link congestion probability. Notably, the precision of
the algorithms (diagnosing congested links that are indeed
congested) also increases because the solution space reduces,
ensuring the algorithms reduce their miss-detections while
maintaining precision, thereby significantly enhancing the
overall F1 score.

Regarding link performance inference, this paper repre-
sents the estimation error by using the normalized root
mean square error (NRMSE), which measures the similar-
ity between two signals. For the true link performance
y[m] and inferred link performance g[m], their NRMSE is
defined as follows:

SN lylm] — glm?
Yoo lylm]|?

Netscope and Sum-Tomo present smaller estimation errors
and a specific link performance in Fig. 10. However, when
ACS is inaccurate, its performance enhancement effect
is understandably reduced, as incorrect ACS information
introduces biases in trimming the solution space, potentially
preventing the algorithms from finding solutions closer to
the actual situation.

NRMSE =

6. CONCLUSION & FUTURE WORK

This paper has addressed the inherent challenges in net-
work tomography, particularly the accurate identification of

10

Additive Congestion Status, by combining adversarial au-
toencoders with LSTM networks. The proposed framework
leverages the spatio-temporal characteristics of network
traffic, offering a robust solution for classifying and quan-
tifying the Additive Congestion Status. Our approach
significantly enhances the network tomography’s precision,
mitigating the impact of anomalous links on performance
assessments while ensuring minimal invasiveness.

For future work, we plan to explore four main directions:
(1) extending our framework to handle dynamic network
topologies where routing paths change over time, (2) devel-
oping a lightweight version of our model to enable real-time
congestion detection in resource-constrained environments,
and (3) incorporating transfer learning techniques to adapt
our pre-trained models to new network architectures with
minimal retraining, and (4) conducting comprehensive val-
idation using real-world network datasets to rigorously
evaluate model accuracy across diverse operational envi-
ronments.

Experimental results demonstrate the efficacy of our
method in reducing false and missed congestion detections,
thereby validating its contribution to improving network
performance evaluations. Specifically, our approach shows
significant improvements over traditional network tomog-
raphy techniques including CLINK (Boolean tomography),
Netscope (Analog tomography), and Sum-Tomo (Range
tomography), achieving better precision in congested link
localization and more accurate link performance inference.
By capturing the dynamic nature of network traffic, our
AAE-LSTM framework provides a more robust solution for
network congestion detection and quantification compared



to these conventional approaches.
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